If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-5k^2-25k-30=0
a = -5; b = -25; c = -30;
Δ = b2-4ac
Δ = -252-4·(-5)·(-30)
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-5}{2*-5}=\frac{20}{-10} =-2 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+5}{2*-5}=\frac{30}{-10} =-3 $
| -4c^2-28c-48=0 | | 3x(x)=972^2 | | -4k^2+16=0 | | 5m^2+15m-50=0 | | -2b^2+4b+16=0 | | -4y^2-8y+12=0 | | 5()2x+6=-4(-5-2x)+3x | | -7.3+9.7x=-0.8x+5 | | (2x-1)-3(4-x)=14 | | 2(3x+5)=16-4x | | 3x-5=2x-18 | | x^2+26x+98=0 | | (x-1)+2(x+3)=22 | | 3(p-1)=5p | | -4m+2=6m-8 | | 2^(6x)=33 | | 10.7-3x=1.1 | | (X-2)(x+7)=90 | | 125-x=90 | | y/1.01=7.7 | | y/1.01=7. | | 6t+8=2t+16 | | 10+f=17 | | (X+13)^2+(y-15)^2=49 | | -8u+34=2(u+7) | | 2(v-5)=-5v+25 | | 4x-24=6(x-2) | | -2(2x+3)=-4+6 | | 10x+40=9x+3+6x+8 | | (m+9)^2=12 | | 14x-5x=-1 | | 6/u=6 |